Explain the relative resistance to bromination of benzene compared with alkenes.

Benzene has a delocalised pi system in which p orbitals of all carbon atoms overlap above and below the carbon ring. Alkenes, however, have localised pi-orbital overlaps between two carbon atoms. The electron density in the localised system is much greater than the delocalised system in benzene. This greater electron density in alkenes allows a dipole to be induced more readily in bromine and thus makes alkenes more susceptible to electrophilic attack. The electron density in benzene's pi system is not significant enough to produce an electrophile, and thus benzene does not readily undergo electrophilic substitution.

Answered by Jasmine W. Chemistry tutor

15185 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Q2. Calculate the pH of the solution formed after 50.0 cm^3 of 0.0108 mol/dm^3 aqueous sodium hydroxide are added to beaker B. Give your answer to 2 decimal places


What is an optical isomer?


Why doesn't chlorine form hydrogen bonds even though it is more electronegative than nitrogen?


Balance the following redox equation: PbO2 + SO32- ==> Pb2+ + SO42-


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences