An exo-planet orbits its local star, of mass 2.00x10^30kg, in a steady circular orbit of radius 8.00x10^8km. Calculate the orbital period of the star, in years.

Key idea is equating gravitational force between planet and star (right hand side) with the centripetal force necessary to maintain the orbit (left hand side):(mv2)/r = (GMm)/r2Notice how the mass of the planet cancels here; only the mass of the star is needed. Thus this can be rearranged to find the orbital velocity.v2 = GM/r.The orbital velocity is related to the angular frequency by v = ωr and the angular frequency, ω, can be related to the period by ω = 2π/T. Hence we get:2π/T = (GM/r3)(1/2)And hence T = 2π((r3/GM))(1/2).Substitute in the values for M, G and r to calculate T, the orbital period. Answers should be given to 2sf, given the precision in the data provided. Be sure to convert the answer into years from seconds, and be aware that r is given in kilometres and will need to be converted to metres.T = 2π((8.00x1011m)3/6.67x10-11Nm2kg–2 x2.00x1030kg)(1/2) = 3.89x108s or 12.3 years.

Related Physics A Level answers

All answers ▸

A geostationary satellite is orbiting Earth, a) What is meant by a geostationary orbit? b) Calculate the height at which the satellite orbits above the surface of the Earth. The radius of the Earth is 6400km and its mass is 6x10^24 kg.


How does a thermal nuclear reactor work?


An electron is traveling at a velocity of 500m/s perpendicular to a uniform magnetic field. A force of magnitude 4.32 x10^(-16) N is acting on the electron, what is the magnetic flux density of the field?


A guitar string 0.65m long vibrates with a first harmonic frequency of 280Hz. Mary measures 1m of the string and discovers that it weighs 8.0x10^-4 kg. What is the tension in the guitar string?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences