An exo-planet orbits its local star, of mass 2.00x10^30kg, in a steady circular orbit of radius 8.00x10^8km. Calculate the orbital period of the star, in years.

Key idea is equating gravitational force between planet and star (right hand side) with the centripetal force necessary to maintain the orbit (left hand side):(mv2)/r = (GMm)/r2Notice how the mass of the planet cancels here; only the mass of the star is needed. Thus this can be rearranged to find the orbital velocity.v2 = GM/r.The orbital velocity is related to the angular frequency by v = ωr and the angular frequency, ω, can be related to the period by ω = 2π/T. Hence we get:2π/T = (GM/r3)(1/2)And hence T = 2π((r3/GM))(1/2).Substitute in the values for M, G and r to calculate T, the orbital period. Answers should be given to 2sf, given the precision in the data provided. Be sure to convert the answer into years from seconds, and be aware that r is given in kilometres and will need to be converted to metres.T = 2π((8.00x1011m)3/6.67x10-11Nm2kg–2 x2.00x1030kg)(1/2) = 3.89x108s or 12.3 years.

Related Physics A Level answers

All answers ▸

Describe how emission spectra are formed and how they can be used to identify the elemental composition of a star.


What are the similarities and differences between gravitational and electric fields?


Particle A (60kg) moves right at 50m/s. It collides with particle B (250kg) moving left at 10m/s. If after the collision particle A moves left at 20m/s, calculate the final velocity of particle B


What is the total capacitance of a circuit containing a 3microfarad capacitor and a 2microfarad capacitor in series.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences