An exo-planet orbits its local star, of mass 2.00x10^30kg, in a steady circular orbit of radius 8.00x10^8km. Calculate the orbital period of the star, in years.

Key idea is equating gravitational force between planet and star (right hand side) with the centripetal force necessary to maintain the orbit (left hand side):(mv2)/r = (GMm)/r2Notice how the mass of the planet cancels here; only the mass of the star is needed. Thus this can be rearranged to find the orbital velocity.v2 = GM/r.The orbital velocity is related to the angular frequency by v = ωr and the angular frequency, ω, can be related to the period by ω = 2π/T. Hence we get:2π/T = (GM/r3)(1/2)And hence T = 2π((r3/GM))(1/2).Substitute in the values for M, G and r to calculate T, the orbital period. Answers should be given to 2sf, given the precision in the data provided. Be sure to convert the answer into years from seconds, and be aware that r is given in kilometres and will need to be converted to metres.T = 2π((8.00x1011m)3/6.67x10-11Nm2kg–2 x2.00x1030kg)(1/2) = 3.89x108s or 12.3 years.

Related Physics A Level answers

All answers ▸

What would happen to n and Emax when  a) the intensity is reduced to 1/2 I but the wavelength λ is unchanged? b) the wavelength λ is reduced but the intensity is unchanged?


Find the angle at which total internal refraction takes place when light is going from glass to air.


In still air an aircraft flies at 200 m/s . The aircraft is heading due north in still air when it flies into a steady wind of 50 m/s blowing from the west. Calculate the magnitude and direction of the resultant velocity?


A spherical object of mass 150kg is orbiting the Earth. The distance between the centre of the object and the centre of the Earth is 25,000m. What is the kinetic energy of the object?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences