A linear sequence starts with: a + 2b ; a + 6b ; a + 10b etc. The 2nd term has value 8. The 5th term has value 44. Work out the values of a and b.

We know that the 2nd term has a value of 8. Thus a + 6b = 8;What is more, we also know that the 5th term has a value of 44. We also know that the next element in the sequence increases by 4b when compared to the previous one. Hence the 5th element will be equal to a + 18b.Thus: a + 6b = 8 eq.1 a + 18b = 44 eq. 2Let's subtract the two equations - eq.2 -eq.1 we get 12 b = 44-8 = 36. Hence b = 3 and a = -10

Answered by Maths tutor

3224 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the best way to solve simultaneous equations?


The nth term of a sequence is 8(2^n + 2^(6n-7)). a) Without a calculator, find the 2nd term of this sequence, b)​​​​​​​ Express the formula in the form 2^x + 2^y


Make "a" the subject of the following equation: 2b = (3a+4)/(c-a)


Solve the equation (3x + 2)/(x - 1) + 3 = 4 (3 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning