A linear sequence starts with: a + 2b ; a + 6b ; a + 10b etc. The 2nd term has value 8. The 5th term has value 44. Work out the values of a and b.

We know that the 2nd term has a value of 8. Thus a + 6b = 8;What is more, we also know that the 5th term has a value of 44. We also know that the next element in the sequence increases by 4b when compared to the previous one. Hence the 5th element will be equal to a + 18b.Thus: a + 6b = 8 eq.1 a + 18b = 44 eq. 2Let's subtract the two equations - eq.2 -eq.1 we get 12 b = 44-8 = 36. Hence b = 3 and a = -10

Related Maths GCSE answers

All answers ▸

For the equation x^2 - 2x - 8 = y find: (a) The roots. (b) The y-intercept. (c) The coordinate of the turning point


Make y the subject of the equation: t=(y+2)/(4-y)


Let f be a function of a real variable into the real domain : f(x) = x^2 - 2*x + 1. Find the roots and the extremum of the function f.


Make x the subject 2x+3=3x-1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences