A linear sequence starts with: a + 2b ; a + 6b ; a + 10b etc. The 2nd term has value 8. The 5th term has value 44. Work out the values of a and b.

We know that the 2nd term has a value of 8. Thus a + 6b = 8;What is more, we also know that the 5th term has a value of 44. We also know that the next element in the sequence increases by 4b when compared to the previous one. Hence the 5th element will be equal to a + 18b.Thus: a + 6b = 8 eq.1 a + 18b = 44 eq. 2Let's subtract the two equations - eq.2 -eq.1 we get 12 b = 44-8 = 36. Hence b = 3 and a = -10

Related Maths GCSE answers

All answers ▸

Solve the inequality 3x+7>x-3


Solve the simultaneous equations 4x + 5y = 13 and 3x - 2y = 27.


Write x^2 - 6x +7 in the form (x+a)^2 +b


The area of a parallelogram is given by the equation 2(x)^2+7x-3=0, where x is the length of the base. Find: (a) The equation of the parallelogram in the form a(x+m)^2+n=0. (b) The value of x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences