Find the coordinates of the point of intersection of the lines 2x + 5y = 5 and x − 2y = 4.

Rearrange both equations to make y the subject:2x + 5y = 5 rearranges to y = -2x/5 + 1 and x - 2y = 4 rearranges to y = x/2 - 2Equate both the rearranged equations and solve for x:-2x/5 + 1 = x/2 - 2x = 10/3Substitute x into one of the equations to solve for y:2(10/3) + 5y = 5y = - 1/3So the coordinates of intersection are: (10/3, - 1/3)

Answered by Ethan O. Maths tutor

3598 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx for f(x)=3x^2 +5x


Suppose a population of size x experiences growth at a rate of dx/dt = kx where t is time measured in minutes and k is a constant. At t=0, x=xo. If the population doubles in 5 minutes, how much longer does it take for the population to reach triple of Xo.


Solve the simultaneous equations x – 2y = 1 and x^2 + y^2 = 29.


Write 36% as a fraction in its simplest terms.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences