Find the coordinates of the point of intersection of the lines 2x + 5y = 5 and x − 2y = 4.

Rearrange both equations to make y the subject:2x + 5y = 5 rearranges to y = -2x/5 + 1 and x - 2y = 4 rearranges to y = x/2 - 2Equate both the rearranged equations and solve for x:-2x/5 + 1 = x/2 - 2x = 10/3Substitute x into one of the equations to solve for y:2(10/3) + 5y = 5y = - 1/3So the coordinates of intersection are: (10/3, - 1/3)

EO
Answered by Ethan O. Maths tutor

4146 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I remember the difference between differentiation and integration?


The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


Solve equation 1/x + x^3 + 5x=0


Given that y = 4x^5 - 5/(x^2) , x=/=0 , find a)dy/dx b)indefinite integral of y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning