prove that lnx differentiated is 1/x

let y = lnx therefore e^y = x then differentiating both sides we get: dy/dx (e^y) = 1 dy/dx = 1/(e^y) and as e^y = x dy/dx = 1/x when y = lnx

Answered by Maths tutor

3200 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you differentiate the following function using two methods:- y = e^(2x+1)


Simplify the following algebraic fraction; (3x^2 - x - 2) / ((1/2)x + (1/3)).


f(x) = (x-5)/(x^2+5x+4), express this in partial fractions and hence find the integral of f(x) dx between x=0 and x=2, giving the answer as a single simplified logarithm.


Differentiate 2cos(x)sin(x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences