Prove that the square of an odd number is always 1 more than a multiple of 4

Let n be any whole number. Any odd number can be written as 2n+1. Any odd number squared is therefore (2n+2)2=2n2n+22n+1=4n2+4n+1=4(n2+n)+1. n2+n is a whole number, so 4(n2+1) is a multiple of 4. Therefore, any odd number squared is 1 more than a multiple of 4.

Answered by Maths tutor

2463 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I need help in Algebra as i struggle a lot with Algebra.


How do I 'simplify' a surd?


Lewis wins £360 in a prize draw. He gives 15% to charity and puts 3/8 into his savings. The rest he uses to buy a bike. How much of the money has Lewis got left for this bike? Note: do not use a calculator


Solve the simultaneous equations: x + 2y = 13, 4x - 3y = 8.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning