Prove that the square of an odd number is always 1 more than a multiple of 4

Let n be any whole number. Any odd number can be written as 2n+1. Any odd number squared is therefore (2n+2)2=2n2n+22n+1=4n2+4n+1=4(n2+n)+1. n2+n is a whole number, so 4(n2+1) is a multiple of 4. Therefore, any odd number squared is 1 more than a multiple of 4.

Answered by Maths tutor

2221 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise and simplify the following equation: (2x^2 + 5x + 3) / (x + 1)


What is the sum of 3/5 and 7/8?


The longest side in a right-angled triangle is 12cm. One of the shorter sides is 4 cm. Calculate the perimeter of the triangle


Work out the percentage increase from 30 to 420.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences