Prove that the square of an odd number is always 1 more than a multiple of 4

Let n be any whole number. Any odd number can be written as 2n+1. Any odd number squared is therefore (2n+2)2=2n2n+22n+1=4n2+4n+1=4(n2+n)+1. n2+n is a whole number, so 4(n2+1) is a multiple of 4. Therefore, any odd number squared is 1 more than a multiple of 4.

Related Maths GCSE answers

All answers ▸

Solve the equation p + 15 = 2(4p − 3)


Three identical isosceles triangles are joined together to make a trapezium. Each triangle has base b cm and height h cm. Work out an expression, in terms of b and h for the area of the trapezium.


Fully factorise 2a^2b+6ab^2


Solve the simultaneous equations: 6x + 2y = -3, 4x - 3y = 11


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences