Why is the classical model of light insufficient in explaining the photoelectric effect?


In the classical model, light is a wave and it's energy depends on its intensity. This would predict electron emission at all wavelengths of light. So the model cannot explain the threshold frequency of light required to cause photo-emission. However, in the quantum model light is made of small discrete packets of energy (photons), whose energy is proportional to the light's frequency. The one-to-one interaction between photon and electron means in order for photo-emission to occur, each photon must have a minimum energy, hence a minimum threshold frequency for light.

RK
Answered by Roy K. Physics tutor

5128 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the de Broglie wavelength of a dust particle that has a mass of 1e-10 kg and a velocity of 0.05m/s?


You are asked to find the Young modulus for a metal using a sample of wire. *(a) Describe the apparatus you would use, the measurements you would take and explain how you would use them to determine the Young modulus for the metal.


State Lenz's law and hence describe and explain what happens to a magnet travelling through a metal tube


If the highest frequency a song is 10 kHz and it is encoded at 16 bits per sample what is the minimum number of bytes needed to encode the 3 minute song?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning