Find the two real roots of the equation x^4 - 5 = 4x^2 . Give the roots in an exact form. [4]

x4 - 5 = 4x2. In order to find the roots of this equation we must factorise it, and, to do so, it must be rearranged such that all the terms are on one side. Therefore, subtract 4x2 from both sides to obtain x4 - 4x2 - 5 = 0.This equation can now be seen to be a quadratic equation in the form of x2, and so must be factorised like any other equation. The integers that multiply together to give -5 and sum together to make -4 are 5 and -1. Therefore this quadratic can be factorised to give (x2-5)(x2+1) = 0. As x2+1=0 has no REAL solutions, the only bracket worth considering is (x2-5) = 0. This gives the answers of x = +/- root 5.Alternative method: substitute u = x2 into the equation, to give u2 - 4u - 5 =0. This might make it easier to spot that the equation is a quadratic. Factorise in the same way, to give (u-5)(u+1) = 0. u = -1 and u =5. However, as u = x2, and x2 = -1 has no real solutions, again this can be discarded.

Answered by Sanjay S. Maths tutor

6873 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Ball P is shot at 18m/s horizontally from the top of a 32m mast. Ball Q is shot at 30m/s at an angle 'a' to the horizontal from the bottom of the mast. They collide mid-air. Prove that cos'a' = 3/5


Given that y = 5x(3) + 7x + 3, find A) dy/dx B) d2y/dx2


What is the integral of x^(3)e^(x) with respect to x?


Two particles A and B of mass 2kg and 3kg respectively are moving head on. A is moving at 5m/s and B is moving at 4m/s. After the collision, A rebounds at 4m/s. What is the speed of B and what direction is it moving in?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences