Find the stationary points of y= 5x^2 + 2x + 7

Stationary points occur when the gradient is 0 so when dy/dx =0 therefore we need to find dy/dx.By using 'down and decrease', we bring down the power and multiply by the coefficient and then decrease the power by 1So, dy/dy = (5*2)x^1 + (2)x^0 which simplifies to dy/dx = 10x + 2Setting dy/dx = 0 gives us 10x + 2 = 0. We can rearrange this to get x = -1/5 and sub this back into the original equation to find the y coordinate stationary point= (-1/5, 34/5)

Answered by Alexandra M. Maths tutor

3133 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Line AB, with equation: 3x + 2y - 1 = 0, intersects line CD, with equation 4x - 6y -10 = 0. Find the point, P, where the two lines intersect.


Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x


Find the equation of a straight line that passes through the coordinates (12,-10) and (5,4). Leaving your answer in the form y = mx + c


A cuboid has a rectangular cross section where the length of the rectangle is equal to twice its width x cm. THe volume is 81 cm^3. a) show that the total length L cm of the cuboid is given by L=12x+162/x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences