A quantity N is increasing with respect to time, t. It is increasing in such a way that N = ae^(bt) where a and b are constants. Given when t = 0, N = 20, and t = 8, N = 60, find the value: of a and b, and of dN/dt when t = 12

N = aebt When N = 20, t = 0. We can substitute this in.20 = aeb x 0 We know that b x 0 = 0, and that e0 = 1, so we can replace these.20 = a x 1 This means that a = 20
N = 20ebt When N = 60, t = 8. We can substitute this in.60 = 20e8b Now, we can rearrange, to get the e8b on one side, and everything else on the other.(60/20 = 3)3 = e8b Now, we can use laws of logs to find 8b, and therefore b. We know eln 3 = 3, so:8b = ln 3 b = (ln 3)/8
Now, we know that N = 20e(1/8)(ln3)(t)We can differentiate: For y = Aekt, dy/dx = kAekt. Therefore, dN/dt = (1/8)(ln3)(20)e(1/8)(ln3)(t)If we substitute in t = 12, we can find a value for dN/dt using the calculator. This comes out to 14.3

Answered by Jack C. Maths tutor

2896 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate tan (x) with respect to x.


How do i differentiate the equation y = x^2 + 6x + 2 with respect to x.


Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences