Given that y = 4x^3 -1 + 2x^1/2 (where x>0) find dy/dx.

This is an example of a common AS differentiation Q. To find dy/dx simply apply the power rule to each term in the equation. The power rule is if you have a term x^n then dy/dx will be n times x^(n-1). e.g. for 4x^3 we multiply 3 by 4 for our coefficient and subtract 1 from the power giving us 12x^2. So here dy/dx = 12x^2 + x^-1/2.

Answered by Maths tutor

6871 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

show that tan(x)/sec2(x) = (1/2)sin(2x)


Express cos(2x) in the form acos^2(x) + b, where a and b are constants.


The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.


How do you find the inverse of a function?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning