Find the derivative of the function y = (2x + 12)/(1-x)

Using quotient rule, let u = 2x+12 and v = 1-x. Then we differentiate u and v separately, so u' = 2 and v' = -1. The formula for the quotient rule is: (vu' - uv')/v^2. Plugging in our values into this equation we get: vu'= 2-2x, uv' = -2x-12 and v^2 = (1-x)^2. Then vu' - uv' = 2 - 2x - (2x-12) = 2 -2x + 2x +12 = 14. So (vu' - uv')/v^2 = 14/(1-x)^2

Answered by Mahreen J. Maths tutor

2776 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you please explain how to expand two brackets, eg. (3x-7)(5x+6)


How do I use numerical methods to find the root of the equation F(x) = 0?


Split the following expression into partial fractions of the form A/(x-3) + B/(4x+2) : (19x-15)/(4x+2)(x-3)


Find the perpendicular bisector passing through the stationary point of the curve y=x^2+2x-7.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences