Find the derivative of the function y = (2x + 12)/(1-x)

Using quotient rule, let u = 2x+12 and v = 1-x. Then we differentiate u and v separately, so u' = 2 and v' = -1. The formula for the quotient rule is: (vu' - uv')/v^2. Plugging in our values into this equation we get: vu'= 2-2x, uv' = -2x-12 and v^2 = (1-x)^2. Then vu' - uv' = 2 - 2x - (2x-12) = 2 -2x + 2x +12 = 14. So (vu' - uv')/v^2 = 14/(1-x)^2

Answered by Mahreen J. Maths tutor

2616 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate 5x^2 + x + 2 and find the value of c if the curve lies on the coordinates (1,3)


A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block ...


Differentiate x^2 from first principles


How do you integrate ln(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences