Use Integration by parts to find ∫ xsin3x dx

∫ xsin3x dx takes the form of any integral ∫ (u)(dv/dx) dx.
∫ (u)(dv/dx) dx = uv - ∫ (v)(du/dx) dx
Taking u=x and dv/dx= sin3x. The equation can be re-written in the form uv - ∫ (v)(du/dx) dx.
Therefore, ∫ xsin3x dx = (x)(-1/3cos3x) - ∫ (-1/3cos3x)(1) dx .
= -x/3cos3x + 1/3 ∫ cos3x dx
= -x/3cos3x + 1/9 sin3x + c

Answered by Maths tutor

13284 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the y-coordinate minimum point of y = 3x^2 + x - 4


When you are working out dy/dx = 0, why do you do this and what does it mean?


Find the integral of (sinxcos^2x) dx


C1 June 2014 Q)4 - https://pmt.physicsandmathstutor.com/download/Maths/A-level/C1/Papers-Edexcel/June%202014%20QP%20-%20C1%20Edexcel.pdf


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning