Answers>Maths>IB>Article

Consider f (x) = logk (6x - 3x 2 ), for 0 < x < 2, where k > 0. The equation f (x) = 2 has exactly one solution. What is the value of k?

There are two essential tricks to grasp in this question. Firstly, since the equation has only one solution, the Discriminant that will be required would equal 0. Secondly, since we are given f(x) = 2 we can write it in a different form: logk k2. This will allow us to cancel the logarithms. Then it is a basic quadratic function. The result would be +- square root of 3, but given that k is larger than 0, it automatically selects the positive value only.

Answered by Jaroslav S. Maths tutor

4690 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

What is the limit for this function as x approaches 0? y(x)=(cos x)^(1/sin x)


How does Euclid's algorithm give solutions to equations?


What is the equation of the tangent drawn to the curve y = x^3 - 2x + 1 at x = 2?


What is the meaning of vector cross product?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences