Answers>Maths>IB>Article

Consider f (x) = logk (6x - 3x 2 ), for 0 < x < 2, where k > 0. The equation f (x) = 2 has exactly one solution. What is the value of k?

There are two essential tricks to grasp in this question. Firstly, since the equation has only one solution, the Discriminant that will be required would equal 0. Secondly, since we are given f(x) = 2 we can write it in a different form: logk k2. This will allow us to cancel the logarithms. Then it is a basic quadratic function. The result would be +- square root of 3, but given that k is larger than 0, it automatically selects the positive value only.

Answered by Jaroslav S. Maths tutor

4691 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Given that f(x)=6x+4 and g(x)=3x^2+7, calculate g of f, for x=2.


Find the constant term in the binomial expansion of (3x + 2/(x^2))^33


Find an antiderivative to the function f(x) = e^x cos(x)


Find cos4x in terms of cosx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences