Take the 2nd derivative of 2e^(2x) with respect to x.

The second derivative is just two derivatives carried out back to back. In this case we just have to differentiate this function once, and then differentiate the result. The derivative of 2e^(2x) can then be found by using the product rule to be 4e^(2x). We can then take the derivative of the result again using the product rule to arrive at the result, 8e^(2x).

Answered by Patrick A. Maths tutor

15854 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find (and simplify) an expression, in terms of n, for the sum of the first n terms of the series 5 + 8 + 11 + 14 + ... ?


x = 2t + 5, y = 3 + 4/t. a) Find dy/dx at (9.5) and b) find y in terms of x.


1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


Differentiate f(x) = 14*(x^2)*(e^(x^2))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences