The point D has polar coordinates ( 6, 3π/4). Find the Cartesian coordinates of D.

We know that r= 6 and θ = 3π/4 as it is given in the question. We can then use the identities: x= rcosθ and y= rsinθ to find the x and y coordinates which are the Cartesian coordinates. So, x= rcosθ = 6cos(3π/4)= -3√2 and y= rsinθ= 6sin(3π/4) = 3√2 . Therefore, the Cartesian coordinates on D are (-3√2, 3√2).

Related Further Mathematics A Level answers

All answers ▸

I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


Give the general solution to the Ordinary Differential Equation: (dy/dx) + 2y/x = 3x+2


a) Find the general solution to the differential equation: f(x)=y''-12y'-13y=8. b) Given that when x=0, y=0 and y'=1, find the particular solution to f(x).


Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences