The point D has polar coordinates ( 6, 3π/4). Find the Cartesian coordinates of D.

We know that r= 6 and θ = 3π/4 as it is given in the question. We can then use the identities: x= rcosθ and y= rsinθ to find the x and y coordinates which are the Cartesian coordinates. So, x= rcosθ = 6cos(3π/4)= -3√2 and y= rsinθ= 6sin(3π/4) = 3√2 . Therefore, the Cartesian coordinates on D are (-3√2, 3√2).

MB
Answered by Meghan B. Further Mathematics tutor

3417 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Expand (1+x)^3. Express (1+i)^3 in the form a+bi. Hence, or otherwise, verify that x = 1+i satisfies the equation: x^3+2*x-4i = 0.


How do I find the asymptotes of a curve?


A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


Given that the equation x^2 - 2x + 2 = 0 has roots A and B, find the values A + B, and A * B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning