Use the factor theorem to show that (x+2) is a factor of g(x)= 4x^3 - 12x^2 - 15x + 50

To prove (x+2) is a factor, the value of x that makes x+2 equal 0 must be substituted into the function g(x) also making g(x)=0. In this case, the value of x being -2 makes x+2 equal to 0 and when substituted into g(x) results in 0. Therefore, (x+2) is a factor of g(x).4(-2)3 - 12(-2)2 - 15(-2) + 50 = -32 - 48 + 30 +50 = 0

Answered by James R. Maths tutor

9317 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that (2x^2 + x -15)/(2x^3 +6x^2) * 6x^3/(2x^2 - 11x + 15) simplifies to ax/(x + b) where a and b are integers


How would you work out the length of an hypotenuse, if the length of the opposite side is 3 cm and the length of the opposite side is 4 cm?


The probability a student in a school wears glasses is 3/7. There are 164 students who DON'T wear glasses. Find the number that wear glasses.


Solve 67x – 5 = 12x + 13


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences