Use the factor theorem to show that (x+2) is a factor of g(x)= 4x^3 - 12x^2 - 15x + 50

To prove (x+2) is a factor, the value of x that makes x+2 equal 0 must be substituted into the function g(x) also making g(x)=0. In this case, the value of x being -2 makes x+2 equal to 0 and when substituted into g(x) results in 0. Therefore, (x+2) is a factor of g(x).4(-2)3 - 12(-2)2 - 15(-2) + 50 = -32 - 48 + 30 +50 = 0

Answered by James R. Maths tutor

8761 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A point lies on a circles diameter such that the distance from the point to the edge of circle is 4 times the distance from the point to the centre. What is the circles area in cm^2 if the distance from the point to edge is 5cm?


Calculate the length of side AB (opposite) in a right angled triangle, where angle C is 32 degrees and length of BC (hypotenuse) is 8cm.


How do I rationalise the denominator of a fraction?


Solve this simultaneous equation: 5n+t= 21 n-3t=9


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences