Use integration by parts to evaluate: ∫xsin(x) dx.

Since our function is a product of two "mini-functions" of x, we are able to use integration by parts.The trick for this is to correctly set 'u' and 'dv'. 'u' should be labelled as the function which can reduce when differentiated. This means that the function should decrease in power. From our main function, we have both x, and sin(x). If we differentiate sin(x), we get cos(x), which hasn't decreased. However, if we differentiate x, we get 1, which has decreased in power.Using the integration by parts formula: ∫[udv] = uv - ∫[vdu].By setting u=x, and dv=sin(x), we can calculate 'du' and 'v' by differentiating u, and integrating dv respectively.u=x --> du=1, and dv=sin(x) --> v= -cos(x).Substituting this into the integration by parts formula stated above gives:∫[xsin(x)] = x*(-cos(x)) - ∫[(-cos(x)1)],Therefore ∫[xsin(x)] = -xcos(x) - ∫[(-cos(x)],And finally: ∫[xsin(x)] = -xcos(x) - (-sin(x)).This gives us our final answer of:∫[xsin(x)] = -xcos(x)+sin(x) + C, where C is the constant of integration.

Answered by Bailey A. Maths tutor

2661 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you avoid making silly mistakes in a maths exam?


Express as a single logarithm 2 loga 6 loga 3 [2 marks]


How do I find the derivative of two functions multiplied by each other?


Simplify the following C4 question into it's simplest form: (x^4-4x^3+9x^2-17x+12)/(x^3-4x^2+4x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences