Use integration by parts to evaluate: ∫xsin(x) dx.

Since our function is a product of two "mini-functions" of x, we are able to use integration by parts.The trick for this is to correctly set 'u' and 'dv'. 'u' should be labelled as the function which can reduce when differentiated. This means that the function should decrease in power. From our main function, we have both x, and sin(x). If we differentiate sin(x), we get cos(x), which hasn't decreased. However, if we differentiate x, we get 1, which has decreased in power.Using the integration by parts formula: ∫[udv] = uv - ∫[vdu].By setting u=x, and dv=sin(x), we can calculate 'du' and 'v' by differentiating u, and integrating dv respectively.u=x --> du=1, and dv=sin(x) --> v= -cos(x).Substituting this into the integration by parts formula stated above gives:∫[xsin(x)] = x*(-cos(x)) - ∫[(-cos(x)1)],Therefore ∫[xsin(x)] = -xcos(x) - ∫[(-cos(x)],And finally: ∫[xsin(x)] = -xcos(x) - (-sin(x)).This gives us our final answer of:∫[xsin(x)] = -xcos(x)+sin(x) + C, where C is the constant of integration.

Answered by Bailey A. Maths tutor

2866 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When trying to solve inequalities (e.g. 1/(x+2)>x/(x-3)) I keep getting the wrong solutions even though my algebra is correct.


Integrating (e^x)sin(x)


When do you know to use integration by parts?


How do you differentiate by first principles?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences