a) Integrate ln(x) + 1/x - x to find the equation for Curve A b) find the x coordinate on Curve A when y = 0.

a) Integrate ln(x) by parts: u = ln(x), dv/dx = 1, du/dx = 1/x, v = x int(udv/dx) = uv - int(du/dx * v) = ln(x)/x - x so int(ln(x) + 1/x - x) = ln(x)/x - x + ln(x) + x^2 + Cb) y = ln(x)/x - x + ln(x) + x^2 = 0 By logic, x will always be positive and through judgement/trial and error, x =1 OR, can rearrange: x = sqrt(x - ln(x)(1 + 1/x)) and carry out iterations until x=1 is found.

Answered by Ellie N. Maths tutor

2488 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 3(x^2) - 12x + 5 in the form a(x - b)^2 - c.


A curve has the equation x^2+2y^2=3x, by differentiating implicitly find dy/dy in terms of x and y.


(Follow on from previous question) A curve has equation y= x^2+3x+2. Use your previous results to i) find the vertex of the curve ii) find the equation of the line of symmetry of the curve


Parlami di cosa hai fatto durante le vacanze di Natale.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences