Find the equation of the tangent to the curve y = x√x at the point (4,6).

Simply the equation. y = x√x is the same as y = x3/2. This is because the square root of any articular number is the same as saying that number raised to the power half. Now to do x1 multiply x1/2 we simply add the powers together to get 3/2. Differentiate the curve. dy/dx = (x3/2) multiply by 3/2 and subtract 1 from the power = 3/2x1/2. In differentiation we multiply by the whole expression by the power and then subtract the power by 1. Substitute the x-coordinate into the dy/dx equation. When x = 4, dy/dx = 3/2 multiply by 41/2. To do this we first do 41/2, we discussed earlier that any number raised to the power half is the same as finding the square root of that number. In this case, the square root of 4 is 2. Next you multiply 2 by 3/2 which is 3. The number 3 is the gradient of the tangent to the curve. So the equation of the tangent so far is y = 3x + c. Since we know the y-coordinate we can find the y-intercept (c) by substituting the coordinates (4,6) into the equation. So when x = 2, y has to equal 6.6 = (3 x 4) + c. So 3 x 4 is 12, 6 = 12 + c Therefore c = -6. The tangent to the curve is therefore y = 3x - 6.

VV
Answered by Vyshnavi V. Maths tutor

2644 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the equation of the straight line which passes through the points (3,1) and (-1,3)?


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


There are 30 balls in the bag, 10 of which are blue. Adam takes 2 balls out of the bag without a replacement and calculated that there is a probability of 0.2 of both balls being blue. What percentage error did he make compared to the true probability?


Point A (-3,5) and point B (1,-15) are to be connected to form a straight line, fing the equation of the line in the form y=mx+c?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences