The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.

Given a circle in the general form you can complete the square to change it into the standard form.x2 + 2gx + y2 +2fy +c = 0 (1). General form of an equation which has the completing the square method applied to it is (x+d)2 + e. By completing the square we want the expression to look like (x+d)2 + e + (y + j)2 + k + c = 0, where d e j and k are all constants.Expanding this expression: x2 +2dx + d2 + e + y2 + 2jy + j2 + k +c = 0 (2). Comparing equatons (1) and (2) d=g, f=j, d2 + e = j2 + k =0. Therefore e = - g2 and k = -f2. Equation (1) can be rewritten as (x+g)2 + - g2 + (y + f)2 + -f2 + c = 0. Rearranging: (x+g)2 + (y + f)2 = g2 + f2- c. The equation of a circle with centre (a, b) and radius r is (x - a)2 + (y - b)2 = r2. Therefore a = -g, b= -f, r = √(g2 + f2- c).Answer: Centre is (-g, -f), Radius is r = (g2 + f2- c)


RS
Answered by Rushabh S. Maths tutor

7021 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let w, z be complex numbers. Show that |wz|=|w||z|, and using the fact that x=|x|e^{arg(x)i}, show further that arg(wz)=arg(w)+arg(z) where |.| is the absolute value and arg(.) is the angle (in polar coordinates). Hence, find all solutions to x^n=1 .


A curve C has equation y = x^2 − 2x − 24x^(1/2) x > 0 find dy/dx


Find an equation of the circle with centre C(5, -3) that passes through the point A(-2, 1) in the form (x-a)^2 + (y-b)^2 = k


If y=3x^3e^x; find dy/dx?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning