The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.

Given a circle in the general form you can complete the square to change it into the standard form.x2 + 2gx + y2 +2fy +c = 0 (1). General form of an equation which has the completing the square method applied to it is (x+d)2 + e. By completing the square we want the expression to look like (x+d)2 + e + (y + j)2 + k + c = 0, where d e j and k are all constants.Expanding this expression: x2 +2dx + d2 + e + y2 + 2jy + j2 + k +c = 0 (2). Comparing equatons (1) and (2) d=g, f=j, d2 + e = j2 + k =0. Therefore e = - g2 and k = -f2. Equation (1) can be rewritten as (x+g)2 + - g2 + (y + f)2 + -f2 + c = 0. Rearranging: (x+g)2 + (y + f)2 = g2 + f2- c. The equation of a circle with centre (a, b) and radius r is (x - a)2 + (y - b)2 = r2. Therefore a = -g, b= -f, r = √(g2 + f2- c).Answer: Centre is (-g, -f), Radius is r = (g2 + f2- c)


RS
Answered by Rushabh S. Maths tutor

7947 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show, by first principles, that the differential of x^2 is 2x.


b) The tangent to C at P meets the coordinate axes at the points Q and R. Show that the area of the triangle OQR, where O is the origin, is 9/(3-e)


Find the normal to the curve y = x^2 at x = 5.


A stone is thrown from a bridge 10m above water at 30ms^-1 30 degrees above the horizontal. How long does the stone take to strike the water? What is its horizontal displacement at this time?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning