Show that 2sin(x) =(4cos(x)-1)/tan(x) can be written as: 6cos^2(x)-cos(x)-2=0

Rearranging gives:4cos(x)-1 = 2sin(x)tan(x) Substituting in tan(x)=sin(x)/cos(x) gives:4cos(x)-1 = 2sin(x)(sin(x)/cos(x))2sin2(x)=4cos2(x)-4cos(x)Substituting in 2sin2(x) = 2-2cos2(x) (from the trigonometric identity: sin2(x) = 1-cos2(x))2-2cos2(x)=4cos2(x)-4cos(x)Rearranging this by collecting like terms gives:6cos2(x)-cos(x)-2=0

Answered by Olivia T. Maths tutor

14435 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the sationary points on the curve x^2 -xy+y^2=12


Differentiate y=x^3ln2x


Prove that the square of an odd integer is odd.


Earth is being added to a pile so that, when the height of the pile is h metres, its volume is V cubic metres, where V = (h6 + 16) 1 2 − 4.Find the value of dV/dh when h = 2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences