Show that 2sin(x) =(4cos(x)-1)/tan(x) can be written as: 6cos^2(x)-cos(x)-2=0

Rearranging gives:4cos(x)-1 = 2sin(x)tan(x) Substituting in tan(x)=sin(x)/cos(x) gives:4cos(x)-1 = 2sin(x)(sin(x)/cos(x))2sin2(x)=4cos2(x)-4cos(x)Substituting in 2sin2(x) = 2-2cos2(x) (from the trigonometric identity: sin2(x) = 1-cos2(x))2-2cos2(x)=4cos2(x)-4cos(x)Rearranging this by collecting like terms gives:6cos2(x)-cos(x)-2=0

Answered by Olivia T. Maths tutor

15582 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


What is the y-coordinate minimum point of y = 3x^2 + x - 4


The parametric equations of a curve are: x = cos2θ y = sinθcosθ. Find the cartesian form of the equation.


Solve the equation 2ln2x = 1 + ln3. Give your answer correct to 2dp.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences