Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.

Use the chain rule as this is a composite function. Let u=2x+5.So the original equation becomes y=(u)^2.Using the chain rule: dy/dx = dy/du * du/dxdy/du = 2udu/dx = 2So dy/dx= 4uSince u=2x+5, dy/dx = 4(2x+5)dy/dx = 8x+20Since stationary points occur when dy/dx=0, let 8x+20=0So 8x=-20So x=-2.5.

DP
Answered by Daniel P. Maths tutor

5278 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation ye ^(–2x) = 2x + y^2 . Find dy/dx in terms of x and y.


Integrate the function xsin(4x^2) with respect to x, using the integration by substitution method.


What does it mean to differentiate a function?


Express the fraction (p+q)/(p-q) in the form m+n√2, where p=3-2√2 and q=2-√2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning