Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.

Use the chain rule as this is a composite function. Let u=2x+5.So the original equation becomes y=(u)^2.Using the chain rule: dy/dx = dy/du * du/dxdy/du = 2udu/dx = 2So dy/dx= 4uSince u=2x+5, dy/dx = 4(2x+5)dy/dx = 8x+20Since stationary points occur when dy/dx=0, let 8x+20=0So 8x=-20So x=-2.5.

Answered by Daniel P. Maths tutor

4449 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of x such that: (log3(81)+log2(32))/(log2(x)) = log2(x) (5 marks)


Find the equation of the normal of the curve xy-x^2+xlog(y)=4 at the point (2,1) in the form ax+by+c=0


How do I find the maximum/minimum of a function?


Integrate 5cos(3x - 1) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences