Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.

Use the chain rule as this is a composite function. Let u=2x+5.So the original equation becomes y=(u)^2.Using the chain rule: dy/dx = dy/du * du/dxdy/du = 2udu/dx = 2So dy/dx= 4uSince u=2x+5, dy/dx = 4(2x+5)dy/dx = 8x+20Since stationary points occur when dy/dx=0, let 8x+20=0So 8x=-20So x=-2.5.

DP
Answered by Daniel P. Maths tutor

4639 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation sin2x = tanx for 0° ≤ x ≤ 360°


Show that sin2A is equal to 2sinAcosA


A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .


Differentiate e^x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences