Solve the simultaneous equations 4x + 7y = 1 and 3x +10y = 15.

There are two main ways of solving this equation, substitution and elimination, here we go through the susbtitution method. This involves rearranging one of the equations to get one of the variables in terms of the other, for example x in terms of y. We then substitute this new expression for x into the other equation and rearrange to solve for y. We then use the value of y in either equation to solve for x.

Rearrange the first equation for x:

4x = 1 - 7y

x = (1-7y)/4

Subsitute x into the second equation:

3*((1-7y)/4) + 10y = 15

Expand the brackets:

(3/4)*(1-7y) + 10y = 15

3/4 -21y/4 + 10y = 15

Collect like terms (write 10y as 40y/4 and 15 as 60/4):

40y/4 - 21y/4 = 60/4 - 3/4

19y/4 = 57/4

Multiply by 4:

19y = 57

Rearrange for y:

y = 57/19 = 3

Subsitute y = 3 into either equation, we use the second:

3x +10*3 = 15

3x + 30 = 15

3x = 15 - 30

3x = -15

x = -15/3 = -5

Finally write the answers out:

x = -5 and y = 3.

LC
Answered by Luke C. Maths tutor

15792 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Matt had 3 piles of coins, A, B and C. Altogether there was 72p. Pile B had twice as much as pile A. Pile C had three times as much as pile B.


(a) Factorisefully 3a3b+12a2b2 +9a5b3


Solve the simultaneous equations: 2x - y = 1, 3x + y = 14


Solve the equation 3x^2+2x-3=3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences