Solve the equation 7^(x+1) = 3^(x+2)

1st we will log both sides of the equation7(x+1) = 3(x+2) becomes log7(x+1) = log3(x+2)NEXT we will use the power law which is loga (x)k=k loga (x)This turns log7(x+1) = log3(x+2)to (x+1) log7 = (x+2)log3NEXT we will multiply out the bracketsxlog7 + log7 = xlog3 + 2log3NEXT we will collect x terms on left and 'number' terms on rightxlog7 - xlog3 = 2log3 - log7NEXT we will factorisex(log7 - log3) = 2log3 - log7NEXT isolate xx = (2log3 - log7)/(log7 - log3) = 0.2966

Answered by Anwulika E. Maths tutor

4198 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.


find dy/dx= x^2 +x^3


How to differentiate with respect to x, xsin2x.


Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences