A-level: solve 8cos^2(x)+6sin(x)-6=3 for 0<x<2(pi)

8(1-sin^2(x))+6sin(x)-6=38(1-sin^2(x))+6sin(x)-9=08sin^2(x)-6sin(x)+1=0(2sin(x)-1)(4sin(x)-1)=02sin(x)-1=0 4sin(x)-1=02sin(x)=1 4sin(x)=1sin(x)=1/2 sin(x)=1/4x=(pi)/6 , 5(pi)/6 , 0.253 , 2.89

Answered by Katie M. Maths tutor

5168 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 20x -x^(2) - 2x^(3). The curve has a stationary point at the point M where x = −2. Find the x coordinates of the other stationary point.


how do you differentiate y=x^2 from first principles?


Find the x co-ordinate of stationary point of the graph y=5x^3 +3x


Write (3 + 2√5)/(7 + 3√5) in the form a + b√5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences