A-level: solve 8cos^2(x)+6sin(x)-6=3 for 0<x<2(pi)

8(1-sin^2(x))+6sin(x)-6=38(1-sin^2(x))+6sin(x)-9=08sin^2(x)-6sin(x)+1=0(2sin(x)-1)(4sin(x)-1)=02sin(x)-1=0 4sin(x)-1=02sin(x)=1 4sin(x)=1sin(x)=1/2 sin(x)=1/4x=(pi)/6 , 5(pi)/6 , 0.253 , 2.89

Answered by Katie M. Maths tutor

5027 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function f(x) = sin(x)/(x^2 +1) , giving your answer in the form of a single fraction. Is x=0 a stationary point of this curve?


Make a the subject of 3(a+4) = ac+5f


Water is flowing into a rightcircular cone at the rate r (volume of water per unit time). The cone has radius a, altitude b and the vertex or "tip" is pointing downwards. Find the rate at which the surface is rising when the depth of the water is y.


Differentiate y=sin(x)/5x^3 with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences