What is gravitational potential and how can gravitational potential energy be used to estimate the escape velocity of a planet of mass m and radius r?

The graviational potential at a point in space is the work done to move a unit mass from infinite (very far away) to the point in question. The gravitational potential V at a point outside a single spherically-symmetric planet is calculated by V = -GM/r, where G is Newton's gravitational constant = 6.67x10^-11 Nm^2kg^-2, M is the mass of the planet and r is the distance from the centre of the planet.
The escape velocity is the speed an object must have so that it can escape a planet's gravitational field from its surface. By conservation of energy, we know that KE1 + PE1 = KE2 + PE2 (KE = kinetic energy, PE = potential energy). The (gravitational) potential energy of an object is the gravitational potential multiplied by its mass (m), so PE = -GMm/r. It's kinetic energy is KE (1/2)mv^2, as usual. KE1 and PE1 are the energies at the surface of the planet (i.e. a distance r from its centre) while KE2 and PE2 are the energies at infinite distance. PE2 is 0 by definition, since no work is required to move the object to infinite from infinite. For the object to escape, KE2 must be at least 0 (not less than 0), so(1/2)m (v_esc)^2 + -GMm/r = 0 + 0This solves to v_esc = (2GM/r)^(1/2).

Answered by Physics tutor

6660 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two railway trucks of masses m and 3m move towards each other in opposite directions with speeds 2v and v respectively. These trucks collide and stick together. What is the speed of the trucks after the collision?


What is the de Broglie wavelength? Why do we care?


Describe how the strong nuclear force between two nucleons varies with the separation of the nucleons, quoting suitable values for separation.


What is the equivalence principle of General Relativity and what does it mean?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning