Expand and simplify the following equation: 3(2a+2) + 4(b+4)

This problem is best split into two parts either side of the '+' sign seen as they are independent of each other, so the first part: 3(2a+2), as the 3 is outside of the bracket we have to multiply everything inside the brackets by 3. So this comes out as: 6a + 6Now the same for the second bracket, 4(b+4) becomes 4b + 16 So written out fully we have 6a + 6 + 4b + 16, as the VARIABLES (a & b) are different they cannot be combined but 6 + 16 are CONSTANTS (as in proper numbers) so can be. So we get 6a + 4b + 22. It might be tempting to stop here however there is one more step. As all CONSTANTS, including those infront of the a & b, are divisible by 2, we can put in brackets and take out a factor of 2 like so: 2(3a+2b+11)

JI
Answered by Joseph I. Maths tutor

3824 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the method for factorising the expression 'x^2 + 3x + 2'?


In a sale a bag is reduced by 30%. The bag is now £31.50. Work out the original price of the bag.


(x - 3)(x + 4) = 0 Solve for x


How can I work out the equation of a line defined by 2 known points?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning