The quadratic equation (k+1)x^2 + (5k-3)x + 3k = 0 has equal roots, find the possible values of the real number k.

Given that the equation is quadratic and has two distinct roots , this implies that the discriminant (b2 - 4ac) in the quadratic formula is equal to zero. Comparing terms a = (k+1), b = (5k -3) and c = 3k, so b2 - 4ac = (5k - 3)2 - 4 (k+1)(3k) = 0. Multiplying out this gives: 13k2 - 42k + 9, which is another quadratic equation this time in terms of the variable k. Solving this quadratic by inspection or using the quadratic formula k = 3 or k = 3/13.

Answered by Adam L. Maths tutor

4296 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the equation of a tangent to a curve at a certain point, from the equation of the curve?


∫ x^3 *ln(2x) (from 2->1) can be written in the form pln 2 + q, where p and q are rational numbers. Find p and q.


Integrate 1/x


Find the x co-ordinates of the stationary points of the graph with equation y = cos(x)7e^(x). Give your answer in the form x = a +/- bn where a/b are numbers to be found, and n is the set of integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences