Describe and explain the photoelectric effect.

Consider a single photon (a particle of light) of a particular energy striking the surface of a metal. If the energy of this photon exceeds the work function of the metal, it will remove a single electron - itself with a particular kinetic energy - from the surface of the metal (extra energy is required to bring the electron to the surface otherwise). For a photon of energy hf (that is, the product of the Plank constant h - 6.626x1034 - and the photon's frequency f), a metal with work function o, the ejected electron's kinetic energy Ke can therefore be given by Ke= hf - o. In other words, the interaction obeys the law of energy conservation, as the excess energy not 'used' by the photon to overcome the work function is transferred into kinetic energy. The photon will not remove an electron if its energy is lower than the work function of the metal. This is because light is quantum in nature, meaning is has both particle and wave-like properties: the photoelectric effect is an example of light displaying the former. Was light only a wave, increasing the intensity of the light shone upon the metal surface would see an electron removed, as in the wave model intensity and energy are proportional. For a particle, however, intensity is obsolete as, no matter how many photons you direct at the surface, the energy of each individual particle remains the same.

Answered by Abbie R. Physics tutor

1258 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A cable with a diameter of 6mm is used to lift crate. Calculate the mass of the crate required to create a stress of 350 MPa.


What is the definition of a moment?


What is the escape velocity of an object leaving a planet mass M, radius R?


How do you work out the direction and strength of the force on a current carrying wire in a magnetic field?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences