Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).

The first step in scoring full marks on this typically 4 mark question is to recognise what it's asking you to do. We use the process of differentiation to solve it. f(x)=2x^3 - 2x^2 + 8xf'(x) = 6x^2 - 4x + 8 as we multiply coefficients by the corresponding power of x and then reduce the power by 1. This also leaves the final term as a constant term without an x. The general rule we use is f'(x) = (na)x^(n-1) where our original equation has the form f(x) = ax^n.Using a similar method for f"(x) where the question asks us to differentiate again to find the second derivative, we find f"(x) = 12x - 4.

Answered by Maths tutor

3420 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find dy/dx at t, where t=2, x=t^3+t and y=t^2+1


The variable x=t^2 and the variable y=2t. What is dy/dx in terms of t?


Using the "complete the square" method, solve the following x^2 +4x - 21 =0


A circle with equation x^2+y^2-2x+8y-40=0. Find the circle centre and the radius


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences