A ball of mass m with initial velocity u rebounds from a wall, with final velocity v. Using Newton's laws of motion explain forces acting in the system.

The ball has initial momentum p1= mu, and final momentum p2=vm. According to the Newton's 2nd law of motion a force exerted on the ball is equal to the rate of change of momentum . It is thus:F = ( p2-p1)/t , where t is the time of interaction (instert suitable diagram). Substituting for momenta:F = (mv - mu)/t, or F = m(v - u)/tTherefore knowing the magnitude of velocities, it is possible to calculate the force exerted on the ball by the wall during the collision. Note that velocities are vectors, so u and v are of opposite signs.According to the Newton's 3rd law of motion, if object A exerts some force on object B, then object B exerts force of the same magnitude but opposite direction on object A.In the presented case this means that the ball acts on the wall with a force of the same magnitude but opposite direction (instert suitable diagram).

MM
Answered by Maks M. Physics tutor

2457 Views

See similar Physics IB tutors

Related Physics IB answers

All answers ▸

Define electric potential at a point in an electric field.


Alternating current produced by the generator in a nuclear power plant is supplied to the primary coil of a transformer. Explain, with reference to Faraday's law of electromagnetic induction, how a current arises in the secondary coil.


A ball mass 2kg rests on a slope of angle 60 degrees. If it is stationary, calculate the coefficient of static friction


How do I make a free body diagram ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning