Differentiate y=(sin(x))^(2)

Using the chain rule of dy/dx=dy/du * du/dx we label sin(x) as u. Now we differentiate u with respect to x, getting cos(x). Then we differentiate u2 , getting 2u. Mutiplying these together gets us 2u*cos(x). Clearly we don't want u anymore, so replace u with sin(x) and obtain 2sin(x)cos(x) as the final answer!

Answered by Bill H. Maths tutor

3046 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Where does the quadratic formulae come from?


Express 4x/(x^2-9)-2/(x+3) as a single fraction in its simplest form


The Curve C has equation y = 3x^4 - 8x^3 -3. Find the first and second derivative w.r.t x and verify that y has a stationary point when x = 2. Determine the nature of this stationary point, giving a reason for your answer.


The polynomial p(x) is given by p(x) = x^3 – 5x^2 – 8x + 48 (a) (i) Use the Factor Theorem to show that x + 3 is a factor of p(x). [2 marks] (ii) Express p(x) as a product of three linear factors. [3 marks]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences