Differentiate y=(sin(x))^(2)

Using the chain rule of dy/dx=dy/du * du/dx we label sin(x) as u. Now we differentiate u with respect to x, getting cos(x). Then we differentiate u2 , getting 2u. Mutiplying these together gets us 2u*cos(x). Clearly we don't want u anymore, so replace u with sin(x) and obtain 2sin(x)cos(x) as the final answer!

BH
Answered by Bill H. Maths tutor

3880 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Functions: If f(x)=3x^2 - 4 and g(x) = x + 3, 1) Evaluate f(3), 2) Find the inverse of f(x) (f^-1(x)), 3)Find fg(x).


Solve 7x – 9 = 3x + 2


What is 'e' and where does it come from?


How do you differentiate y=sin(cos(x))?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning