What do integrals and derivatives actually do/mean?

Integrals are frequently used in computing areas in two, three and even multidimensional space, thus they can be used to find out the "area" or "volume" of objects that we cannot even draw. Practically, when we do the integral of a function we are computing the area of the space that lies "under" the funtion. Eg: uniform function = area of a square/rectangle
The derivatives show us the rate of change of a function, which means how much a function is changing at different points. This a very useful tool that is used in analysing functions which model (describe) different dynamics, as it shows us their maximum, minimum, and how fast they would grow or decrease. Eg: in physics the velocity is the derivative of the position function

DF
Answered by Dragos-Sebastian F. STEP tutor

967 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Find h(x), for x≠0, x≠1, given that: h(x)+h(1/(1−x))=1−x−1/(1−x)


Find 100 consecutive natural numbers, each of which is composite


Suppose that 3=2/x(1)=x(1)+(2/x(2))=x(2)+(2/x(3))=x(3)+(2/x(4))+...Guess an expression, in terms of n, for x(n). Then, by induction or otherwise, prove the correctness of your guess.


Prove that any number of the form pq, where p and q are prime numbers greater than 2, can be written as the difference of two squares in exactly two distinct ways.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning