Let f(x)= x^3 -9x^2 -81x + 12. Calculate f'(x) and f''(x). Use f'(x) to calculate the x-values of the stationary points of this function.

To answer this question we need to first decide what the question is asking for. In this case the question is asking for the first and second differential of a given function. If we have a function f(x) = xn then the general formula for the differential is f'(x) = nxn-1. Also, as a rule, any constant term in the function will differentiate to zero. The second differential can be calculated by differentiating the first differential.
We can use these rules to answer the question. f'(x) = 3x2 -18x -81 f''(x) = 6x -18
The question then asks us to find the stationary points . To calculate the stationary points of the function, we must solve f'(x) = 0. i.e. 3x2 -18x -81 = 0. This can be simplified to x2 -6x -27 = 0.We then factorise to get (x-9)(x+3) = 0. Therefore we find the stationary points are at x = 9 or -3

Answered by Maths tutor

3473 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


Find where the graph of y=3x^2+7x-6 crosses the x axis


Rationalise the complex fraction: (8 + 6i)/(6 - 2i)


Show that 2sin(2x)-3cos(2x)-3sin(x)+3=sin(x)(4cos(x)+6sin(x)-3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning