proof for the derivative of sin(x) is cos(x) (5 marks)

let f(x)=sin x f'(x) lim h-> 0 = ( sin(x+h) - sin(x))/h. f'(x) lim h-> 0 =( sin(x)cos(h) + cos(x)sin(h) - sin(x))/ h. f'(x) lim h-> 0=(sin(x)(cos(h)-1)/h + cos(x) (sin(h))/h. then as h tends to zero. (cos(h)-1)/h=0 and sin(h)/h =1. f'(x)= cos(x) QED

Answered by Nicola P. Maths tutor

3150 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate f'(1) for the function f(x) = (x^2 + 2)^5


By using partial fractions, integrate the function: f(x) = (4-2x)/(2x+1)(x+1)(x+3)


Given that 3^(-3/2) = a* 3^(1/2), find the exact value of a.


Express 9^(3x+1) in the form 3^y, giving "y" in the form "ax+b" where "a" and "b" are constants.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences