If s=ut + 1/2 at^2 , a) make a the subject of the expression b) make u the subject of the expression c) if s=10, t=2 and u=4 find the value of a

a) s=ut + 1/2 at2Firstly , take the ut to the left hand side of the equation in order to isolate the 1/2 at2.s-ut=1/2 at2 Then multiply both sides by 2 to leave just at2 on the right hand side.2s-2ut=at2Finally divide both sides by t2 to leave just a on the right hand side.a=(2s-2ut)/t2
b) Firstly, minus 1/2 at2 from both sides to leave just ut on the right hand side.s-1/2 at2=utThen divide both sides by t in order to get only u on the right hand side.(s-1/2 at2)/t =uThis can also be written as u=s/t - 1/2 at
c) Use the equation a= (2s-2ut)/t2Substitute in valuesa=(2(10)-2(4)(2))/(2)2a=(20-16)/4a=4/4a=1

Answered by Freddy Y. Maths tutor

4363 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I solve these two equations simultaneously: 7x+y=1 and 2x^2 - y = 3


What are the roots of (2x-5)(x-3) = 0


Dominik hires a satellite phone. His total hire charge is £860. For how many weeks did he hire the phone? (Total hire charge = No. of week X 90 +50)


John ran a race at his school. The course was measured at 450m correct to 2sf and his time was given at 62 econds to the nearest second. Calculate the difference between his maximum and minimum possible average speed. Round you answer to 3sf.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences