If a stationary observer sees a ship moving relativistically (near the speed of light), will it appear contracted or enlarged? And by how much.

Einstein's theory of special relativity postulates two theories; firstly the speed of light is a universal constant, and secondly the laws of physics are the same in all inertial (non-accelerating) reference frames. In this question, we have two reference frames; one relativistic and the other stationary. To measure time in these reference frames we use a 'light-clock', in which t is the time taken for light to travel the width of the ship and reflect back off a mirror, is measured. For a stationary observer t=2L/c, where L is the ship width.A stationary observer, looking at the moving ship, will see the light beam travel further than if it were at rest. Hence for an observer, the time increases. Now consider distances - in order to keep the speed of light a constant, for an increase in time the distance must decrease. This 'shrinking' only occurs parallel to the direction of motion and is given by the factor gamma = 1 / sqrt(1-v^2/c^2), which is always greater than 1. Hence a stationary observer sees L' = L/gamma.

TH
Answered by Thomas H. Physics tutor

1914 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A particle that moves uniformly in a circular path is accelerating yet moving at a constant speed. Explain this statement.


Resolving the forces for an object suspended on two strings.


what would be the mass required to keep an object with a mass of 250kg orbiting at a constant distance of 100km with a linear velocity of 100m/s?


Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning