If a stationary observer sees a ship moving relativistically (near the speed of light), will it appear contracted or enlarged? And by how much.

Einstein's theory of special relativity postulates two theories; firstly the speed of light is a universal constant, and secondly the laws of physics are the same in all inertial (non-accelerating) reference frames. In this question, we have two reference frames; one relativistic and the other stationary. To measure time in these reference frames we use a 'light-clock', in which t is the time taken for light to travel the width of the ship and reflect back off a mirror, is measured. For a stationary observer t=2L/c, where L is the ship width.A stationary observer, looking at the moving ship, will see the light beam travel further than if it were at rest. Hence for an observer, the time increases. Now consider distances - in order to keep the speed of light a constant, for an increase in time the distance must decrease. This 'shrinking' only occurs parallel to the direction of motion and is given by the factor gamma = 1 / sqrt(1-v^2/c^2), which is always greater than 1. Hence a stationary observer sees L' = L/gamma.

TH
Answered by Thomas H. Physics tutor

2103 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Show that a pendulum undergoes simple harmonic motion (SHM). State your assumptions. The pendulum is made up of a light inextensible string, attached to a ceiling at one end and with a particle of mass m attached to the other end.


How do capacitors work and what are its units?


Why is a pendulum with a bob of the same size but larger mass than another bob damped more lightly?


A passenger is standing in a train. The train accelerates and the passenger falls backwards. Use Newton's first law of motion to explain why he fell backwards.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning