x^2 = 4(x – 3)^2

This is a quadratic equation, which contains terms up to x2. All quadratic equations can be written in the form ax2 + bx + c = 0 where a, b and c are numbers, and a cannot be equal to zero. Expand the brackets: x2 = 4(x2 - 6x + 9). Multiply RHS brackets by 4: x2 = 4x2 - 24x + 36. Collect x's on one side: 3x2 - 24x + 36 = 0. Simplify: x2 - 8x + 12 = 0. Factorise: (x - 6)(x - 2) = 0. The product of x - 6 and x - 2 is 0, so one or both brackets must also be equal to 0, hence x = 6 or x = 2. Alternatively you can use the quadratic formula provided in the formula sheet and substitute the corresponding numbers in, or solve by completing the square.

JW
Answered by Jennifer W. Maths tutor

3631 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve simultaneously, x+y=2 and 4y^2-x^2=11


Work out the number of green pens in the box. (rest of Q below)


Expand the following : (2x+3)(x-1)


The equation of the line L1 is y=3x–2. The equation of the line L2 is 3y–9x+5=0. Show that these two lines are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning