x^2 = 4(x – 3)^2

This is a quadratic equation, which contains terms up to x2. All quadratic equations can be written in the form ax2 + bx + c = 0 where a, b and c are numbers, and a cannot be equal to zero. Expand the brackets: x2 = 4(x2 - 6x + 9). Multiply RHS brackets by 4: x2 = 4x2 - 24x + 36. Collect x's on one side: 3x2 - 24x + 36 = 0. Simplify: x2 - 8x + 12 = 0. Factorise: (x - 6)(x - 2) = 0. The product of x - 6 and x - 2 is 0, so one or both brackets must also be equal to 0, hence x = 6 or x = 2. Alternatively you can use the quadratic formula provided in the formula sheet and substitute the corresponding numbers in, or solve by completing the square.

Answered by Jennifer W. Maths tutor

2867 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve: 4x + 5 = 6x - 13


Solve the simultaneous equations x - 2y = 5 and 5x + 4y = 11


Solve the next innequation: 12x-4>4x+12


How many significant figures should I include in my answer?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences