Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.

Stationary points occur when f'(x) = 0. To find this, we differentiate f(x) to get f'(x) = 12x^3 - 24x^2. We know that at the stationary points are when f'(x) = 0. so we know that 12x^3 - 24x^2 = 0. We can factorise this to get 12x^2(x - 2) = 0. We can solve this equation to get 12x^2 = 0 and x - 2 = 0. From this we get x = 0 or x = 2. The two x -values of the stationary points of f(x) are 0 and 2.

Answered by Yathavan S. Maths tutor

2706 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of yx+5y-sin(y) = x


Find the gradient of the exponential curve y(x)=(9e^(7x))/(12e^(2x)) at x=2/5


Prove that n is a prime number greater than 5 then n^4 has final digit 1


Is the trapezium rule an exact method of integration?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences