Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.

Stationary points occur when f'(x) = 0. To find this, we differentiate f(x) to get f'(x) = 12x^3 - 24x^2. We know that at the stationary points are when f'(x) = 0. so we know that 12x^3 - 24x^2 = 0. We can factorise this to get 12x^2(x - 2) = 0. We can solve this equation to get 12x^2 = 0 and x - 2 = 0. From this we get x = 0 or x = 2. The two x -values of the stationary points of f(x) are 0 and 2.

YS
Answered by Yathavan S. Maths tutor

2891 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 4x^5 - 5/(x^2) , x=/=0 , find a)dy/dx b)indefinite integral of y


Write the complex number Z=1/2+sqrt(3)/2j both as a function involving cos & sin, and as a function involving an exponential.


A circle C has centre (-5, 12) and passes through the point (0,0) Find the second point where the line y=x intersects the circle.


Differentiate 2x/cos(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences