Prove that the square of an odd number is always one more than a multiple of 4

If we say n is any number, then we know 2n represents an even number - any number multiplied by 2 is always even. 2n+1 represents an odd number - adding 1 to an even number always gives an odd number (2n + 1)2 = (2n + 1)(2n + 1) = 4n2 + 2n + 2n + 1 = 4n2 + 4n + 1 = 4(n2 + n) + 1. Here 4(n2 + n) represents a multiple of four so we have a multiple of 4 plus 1. Hence the square of an odd number is always one more than a multiple of 4.

Answered by Rebecca R. Maths tutor

2489 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Frank owns an ice cream van. When he bought the van five years ago and an ice cream cost £1.50. If the price of an ice cream increases by 3% a year how much does an ice cream cost now?


Work out the equation of the tangent to a circle of centre [0,0] at the point [4,3]


32sqrt 2 = 2^a, find the value of a


expand and simplify (x+1)(x-1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences