How can we determine stationary points by completing the square?

Suppose we have completed the square on y=ax^2+bx+c and attained y=a(x+p)^2+q, where a,b,c,p,q are real numbers with 'a' not equal to zero and p,q can be expressed in terms of a,b,c. For a>0 we have a minimum point, where x takes a value such that a(x+p)^2+q is smallest, giving x= -p and hence y=q. For a<0, we have a maximum point, where x takes a value such that a(x+p)^2+q is biggest, also giving x= -p and hence y=q. 

Answered by Hayk Y. Maths tutor

13679 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 5sinxcosx + 5cosx


What is the integral of x^2 sin(x) between the limits 0 and π/2


How to find y-intercept on a graphical calculator


Ignoring air resistance and assuming gravity to equal 9.81. If a ball of mass 1kg is dropped from a height of 100m, calculate it's final velocity before it hits the ground.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences