How can we determine stationary points by completing the square?

Suppose we have completed the square on y=ax^2+bx+c and attained y=a(x+p)^2+q, where a,b,c,p,q are real numbers with 'a' not equal to zero and p,q can be expressed in terms of a,b,c. For a>0 we have a minimum point, where x takes a value such that a(x+p)^2+q is smallest, giving x= -p and hence y=q. For a<0, we have a maximum point, where x takes a value such that a(x+p)^2+q is biggest, also giving x= -p and hence y=q. 

HY
Answered by Hayk Y. Maths tutor

15490 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = 2x^3 + 6x^2 + 4x + 3 with respect to x.


How do you integrate ln(x) ?


The line AB has equation 3x + 5y = 7. Find the gradient of line AB.


f(x) is defined by f(x) = 3*x^3 + 2*x^2 - 7*x + 2. Find f(1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning