How can we determine stationary points by completing the square?

Suppose we have completed the square on y=ax^2+bx+c and attained y=a(x+p)^2+q, where a,b,c,p,q are real numbers with 'a' not equal to zero and p,q can be expressed in terms of a,b,c. For a>0 we have a minimum point, where x takes a value such that a(x+p)^2+q is smallest, giving x= -p and hence y=q. For a<0, we have a maximum point, where x takes a value such that a(x+p)^2+q is biggest, also giving x= -p and hence y=q. 

HY
Answered by Hayk Y. Maths tutor

14723 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that Y=(x+3)(x+5); find dy/dx


Express (5-√ 8)(1+√ (2)) in the form a+b√2 , where a and b are integers


7^6 x 7^3


f(x) = x^3 - 13x^2 + 55x - 75 , find the gradient of the tangent at x=3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning