A 80kg man is hanging from two 1.5m ropes that lie at 60 degrees from the horizontal. What is the tension in each rope required to prevent the man from dropping?

The man is 80kg so the downward force exerted by his weight is 80g (where g is the force of gravity equalling 9.8 Newtons (2dp)). Therefore the upward force exerted by each rope must equal 40g. Using trigonometry Sin(60)= 40g/T where T= the tension in the rope.Rearrange to make T the subject: 40g/Sin(60)= 452.64

DD
Answered by Dominic D. Physics tutor

1780 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Can a projectile of speed 10m/s at an angle of 45° to the horizontal following a path perpendicular to a wall 8m away and 6m high reach beyond the wall? Justify your answer. Take g as 10m/s/s


Why is it important that the baryon and lepton numbers of an interaction are conserved?


Why does a feather fall at the same rate as a hammer on the Moon?


Explain how a standing wave is set up on a string fixed at both ends.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning