Prove, by induction, that 4^(n+1) + 5^(2n-1) is always divisible by 21

Firstly when proving something by induction, we always show that the base case works, i.e. we plug in n=1. In this case we get 42 + 51 =21, which is divisible by 21. Next we state what is called the inductive hypothesis, this just means we assume it is true for n=k, i.e. we assume 4k+1 + 52k-1 is divisible by 21. Now we try to use this to show that the case n=k+1 is also true, in this case we consider 4k+2 + 52(k+1)-1 which can be manipulated as shown below4k+2 +52k+1 = 4* 4k+1 + 55 52k-1 = 4* 4k+! + 4* 52k-1 + 21* 52k-1 = 4*( 4k+1 + 52k-1) + 21* 52k-1Now, as we know that 4k+1 + 52k-1 is divisible by 21, we can see that the expression above is also divisible by 21.Lastly we conclude that because the case n=1 is true and if n=k is true then n=k+1 is true, the statement is true for all natural numbers n.

GS
Answered by Graeme S. Further Mathematics tutor

9612 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Integrate cos(log(x)) dx


(FP1) Given k = q + 3i and z = w^2 - 8w* - 18q^2 i, and if w is purely imaginary, show that there is only one possible non-zero value of z


Prove by induction that 6^n + 4 is divisible by 5 for all integers n >= 1


A 1kg ball is dropped of a 20m tall bridge onto tarmac. The ball experiences 2N of drag throughout its motion. The ground has a coefficient of restitution of 0.5. What is the maximum height the ball will reach after one bounce


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning