Find (dy/dx) of x^3 - x + y^3 = 6 + 2y^2 in terms of x and y

In order to differentiate this expression, we need to use implicit differentiation. An expression in the form y = f(x), where f(x) means "a function of x", is called an explicit equation and needs to be differentiated explicitly (i.e. the explicit equation y= x2 differentiates to 2x). However, in the above question, the equation consists of functions of both y and x (the functions of y are y3 and 2y2 and those of x are x3 and -x) meaning that it is an implicit equation.
Firstly we need to differentiate the functions of x: x3 differentiates to 3x2 and -x differentiates to -1. We then need to differentiate the functions of y: y3 differentiates to 3y2 and 2y2 differentiates to 4y. However, as we need to differentiate y in terms of x (given by dy/dx in the question), the correct differentiated terms are 3y2(dy/dx) and 4y(dy/dx). Finally, the constant 6 differentiates to 0 as it has no x or y terms. Replace the terms in the question with the differentiated terms to get: 3x2 - 1 + 3y2(dy/dx) = 0 + 4y(dy/dx). Now we need to rearrange the equation to get all terms with (dy/dx) on one side. This leaves us with: 3y2(dy/dx) - 4y(dy/dx) = 1 - 3x2 . If we factorise (dy/dx) out of the left hand side, we get: (dy/dx)(3y2- 4y) = 1 - 3x2. Finally, to get dy/dx in terms of x and y, we need to divide both sides of the equation by (3y2- 4y). This gets us to the answer of the question which is (dy/dx) = (1 - 3x2)/(3y2- 4y).

Related Maths A Level answers

All answers ▸

Using the Quotient rule, Find dy/dx given that y = sec(x)


A circle with centre C has equation: x^2 + y^2 + 20x - 14 y + 49 = 0. Express the circle in the form (x-a)^2 +(y-b)^2=r^2. Show that the circle touches the y-axis and crosses the x-axis in two distinct points.


A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


How would I integrate the indefinite integral x^2 dx?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences