3n + 2 < 14, and 6n / (n ^2 + 5) >1. Find the values that n can take.

This is a inequality question. There are two separate inequalities and the values n can take are the solutions of n that overlap between the 2 inequalities. First inequality: 3n< 12 therefore n <4 . Second inequality : 6n > n2 + 5 then n2 - 6n + 5 < 0 therefore (n-5)(n-1) < 0.For the second inequality we can then use the graph.= of the quadratic. The part below 0 is between 5 and 1 so for this inequality the solution is 1< n < 5 and combining the two solutions is 1< n<4. This is the answer to the question.If student interested in maths at a level or found it too easy: potential extension looking at 1/n < 5 and approaches that can be taken



Answered by Mudit T. Maths tutor

3093 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to Solve Two Simultaneous Equations


Solve the equation x^2 - 8x + 5 = 0 by completing the square


Rearrange the following formula to make x the subject. y=4x-7


Solve the following simultaneous equations: 4x + 5y = -8 and 6x-2y = 26


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences