Use integration by parts to find ∫x e^(x)

So to integrate this function we would need to use a method called Integration by parts that you may have come across in your studies.
This is where we separate the function into two parts to make it easier to integrate.
We assign one part of the function the letter u, and the other part of the function the derivation of v , represented as dv.
We then differentiate the function assigned as u to find du and integrate the function assigned as dv to find v.
We then plug these values into the formula for integration by parts which is:
∫ = uv - ∫vdu
So in the case of this question we would assign the values:
u = x dv = e^(x)
We then differentiate x to get 1, and integrate e^x, which of course remains as e^(x).
du = 1 v = e^(x)
Plugging these into the equation we find:
∫ = x e^(x) - ∫e^(x)
The integral of e^x being e^x as we established giving us the formula
∫ = x e^(x) - e^(x)
Which can be simplified to:
∫ = e^(x) ( x - 1)
And as we integrated it is possible that there was a certain constant that disappeared when differentiated so we add + C to the end of the formula.
Giving us the end result of:
∫ x e^(x) = e^(x) ( x - 1 ) + C

Answered by Maths tutor

3495 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A new sports car accelerates using rockets at 5m/s for 30 seconds from some traffic lights and then decelerate for 45 seconds to a stop.


The line AB has equation 5x + 3y + 3 = 0 . (a) The line AB is parallel to the line with equation y = mx + 7 . Find the value of m. [2 marks] (b) The line AB intersects the line with equation 3x -2y + 17 = 0 at the point B. Find the coordinates of B.


Given that log_{x} (7y+1) - log_{x} (2y) =1 x>4, 0<y<1 , express y in terms of x.


A curve C has equation: y = x^2 − 2x − 24x^1/2, x > 0; Find (i) dy/dx (ii) d^2y/dx^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning