How to solve a standard first order differential equation?

First we must ensure that the differential is i the standard form of y' + p(x) y = f(x)The we use the integration factor I(x) = e to the integral of p(x)we then realise that if we differentiate this we will get I'(x) = p(x)* e to the integral of p(x) which is equal to I(x)*p(x)we then multiply the equation through by I(x) giving i(x) y' + I(x)*p(x) y = f(x) I(x)the left hand side can be simplified by the product rule of differentiation and we can then integrate through to find our answer

JB
Answered by Joe B. Further Mathematics tutor

2730 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that the sum of the first n integers can be written as (1/2)(n)(n+1).


Find values of x which satisfy the inequality: x^2-4x-2<10


Given that p≥ -1 , prove by induction that, for all integers n≥1 , (1+p)^k ≥ 1+k*p.


Prove by induction that (n^3)-n is divisible by 3 for all integers n>0 (typical fp1 problem)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning