Find d/dx (ln(2x^3+x+8))

Use the chain rule: dy/dx = dy/du * du/dx
Let y = ln(2x^3+x+8)Let u = 2x^3+x+8
dy/dx = d/dx (ln(2x^3+x+8)) = dy/du * du/dx
dy/du = 1/udu/dx = 6x^2 + 1
dy/dx = 1/u * (6x^2 + 1) = (1/(2x^3+x+8)) * (6x^2 + 1) = (6x^2 + 1) / (2x^3+x+8)
d/dx (ln(2x^3+x+8)) = (6x^2 + 1) / (2x^3+x+8)

Related Maths A Level answers

All answers ▸

Differentiate x^cos(x) and find the derivative of cosec^-1(x)


Binomially expand the equation (2+kx)^-3


The lines y = 3x² - x + 5/2 intersects the line y = x/2 +7 at two points. Give their coordinates. Show your working


The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences