Find d/dx (ln(2x^3+x+8))

Use the chain rule: dy/dx = dy/du * du/dx
Let y = ln(2x^3+x+8)Let u = 2x^3+x+8
dy/dx = d/dx (ln(2x^3+x+8)) = dy/du * du/dx
dy/du = 1/udu/dx = 6x^2 + 1
dy/dx = 1/u * (6x^2 + 1) = (1/(2x^3+x+8)) * (6x^2 + 1) = (6x^2 + 1) / (2x^3+x+8)
d/dx (ln(2x^3+x+8)) = (6x^2 + 1) / (2x^3+x+8)

Answered by Maths tutor

3798 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate ln(x) with respect to x?


A block mass m lies on an incline rough plane, with coefficient of friction µ. The angle of the block is increased slowly, calculate the maximum angle of the slope that can be achieved without the block slipping.


If f(x) = (3x-2) / x-5 x>6, find a.) ff(8) b.) the range of f(x) c.) f^-1(x) and state its range.


What is a good method to go about sketching a polynomial?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning