Find d/dx (ln(2x^3+x+8))

Use the chain rule: dy/dx = dy/du * du/dx
Let y = ln(2x^3+x+8)Let u = 2x^3+x+8
dy/dx = d/dx (ln(2x^3+x+8)) = dy/du * du/dx
dy/du = 1/udu/dx = 6x^2 + 1
dy/dx = 1/u * (6x^2 + 1) = (1/(2x^3+x+8)) * (6x^2 + 1) = (6x^2 + 1) / (2x^3+x+8)
d/dx (ln(2x^3+x+8)) = (6x^2 + 1) / (2x^3+x+8)

Answered by Maths tutor

3331 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the tangent at the point (2,1) of the curve with equation x^2 + 3x + 4.


Solve for -pi < x < pi: tanx = 4cotx + 3


Find the set of values for x for which x^2 - 9x <= 36


How many people in a room is required such that the probability of any two people sharing a birthday is over 50 percent?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences