Find d/dx (ln(2x^3+x+8))

Use the chain rule: dy/dx = dy/du * du/dx
Let y = ln(2x^3+x+8)Let u = 2x^3+x+8
dy/dx = d/dx (ln(2x^3+x+8)) = dy/du * du/dx
dy/du = 1/udu/dx = 6x^2 + 1
dy/dx = 1/u * (6x^2 + 1) = (1/(2x^3+x+8)) * (6x^2 + 1) = (6x^2 + 1) / (2x^3+x+8)
d/dx (ln(2x^3+x+8)) = (6x^2 + 1) / (2x^3+x+8)

Related Maths A Level answers

All answers ▸

Differentiate f(x) = 2xlnx.


A stone is thrown from a bridge 10m above water at 30ms^-1 30 degrees above the horizontal. How long does the stone take to strike the water? What is its horizontal displacement at this time?


Differentiate y=x^2cos(x)


Find the shortest distance between the line L: x=1+t, y=1+2t, z=1-t and the point A: (2,3,4)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences