Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?

This a geometric sequence with first term 'a' as 100 and common ratio 'r' of 1.02. 100 x 1.02n > 150 1.02n > 150/100 =1.02n > 1.5 log10(1.02n) > log10(1.5) Using power rule, n[log10(1.02)] > log10(1.5) n > log10(1.5)/log10(1.02) Using calculator, n > 20.47531886 This means the amount exceeds £150 after 21 years. 16 + 21 = 37 Therefore, the answer is: by Matthew's 37th birthday, the amount exceeds £150.

Answered by Maths tutor

3593 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (16x+78)/(2x^2+25x+63) as two fractions


Find the equation of the tangent line to the curve y = 2x^2 - 4x + 3 at the point (3,9)


The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.


Use logarithms to solve the equation 2^5x = 3^2x+1 , giving the answer correct to 3 significant figures.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning