Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?

This a geometric sequence with first term 'a' as 100 and common ratio 'r' of 1.02. 100 x 1.02n > 150 1.02n > 150/100 =1.02n > 1.5 log10(1.02n) > log10(1.5) Using power rule, n[log10(1.02)] > log10(1.5) n > log10(1.5)/log10(1.02) Using calculator, n > 20.47531886 This means the amount exceeds £150 after 21 years. 16 + 21 = 37 Therefore, the answer is: by Matthew's 37th birthday, the amount exceeds £150.

Answered by Maths tutor

3194 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y={(x^2+4)(x−3)}/2x, find dy/dx in its simplest form.


Express 3/2x+3 – 1/2x-3 + 6/4x^2-9 as a single fraction in its simplest form.


If n is an integer such that n>1 and f(x)=(sin(n*x))^n, what is f'(x)?


Integrate the following equation to find y: dy/dx = 3x^2 + 2x + 6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences