Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?

This a geometric sequence with first term 'a' as 100 and common ratio 'r' of 1.02. 100 x 1.02n > 150 1.02n > 150/100 =1.02n > 1.5 log10(1.02n) > log10(1.5) Using power rule, n[log10(1.02)] > log10(1.5) n > log10(1.5)/log10(1.02) Using calculator, n > 20.47531886 This means the amount exceeds £150 after 21 years. 16 + 21 = 37 Therefore, the answer is: by Matthew's 37th birthday, the amount exceeds £150.

Related Maths A Level answers

All answers ▸

How do I differentiate an algebraic expression? (e.g. y=3x^4 - 8x^3 - 3) [the ^ represents x being raised to a power]


Find the inverse of the function g(x)=(4+3x)/(5-x)


Find dy/dx, given that y=(3x+1)/(2x+1)


Given that f(x) = (x^2 + 3)(5 - x), find f'(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences