Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?

This a geometric sequence with first term 'a' as 100 and common ratio 'r' of 1.02. 100 x 1.02n > 150 1.02n > 150/100 =1.02n > 1.5 log10(1.02n) > log10(1.5) Using power rule, n[log10(1.02)] > log10(1.5) n > log10(1.5)/log10(1.02) Using calculator, n > 20.47531886 This means the amount exceeds £150 after 21 years. 16 + 21 = 37 Therefore, the answer is: by Matthew's 37th birthday, the amount exceeds £150.

Answered by Maths tutor

3668 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)


Two points have coordinates (1,-6) and (-2,3). Find the equation of the line which joins them, and their midpoint.


Differentiate f(x)= x^3 + x^(1/3)-2


Solve e^x-6e^-x=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning